OPTK  0.1.2
Toolkit for global optimisation algorithms
Public Member Functions | List of all members
syn::deflected_corrugated_spring Class Reference

#include <synthetic.hpp>

Inheritance diagram for syn::deflected_corrugated_spring:
syn::synthetic optk::benchmark

Public Member Functions

 deflected_corrugated_spring (int dims)
 
double evaluate (inst::set x) override
 
- Public Member Functions inherited from syn::synthetic
 synthetic (const std::string &n, u_int dims, double lb, double ub, double opt)
 
 synthetic (const std::string &n, u_int dims, double opt)
 
 ~synthetic ()
 
sspace::sspace_tget_search_space ()
 
void set_properties (std::vector< properties > p)
 
std::vector< propertiesget_properties ()
 
inst::set get_opt_param ()
 
double get_opt ()
 
void update_opt (double opt)
 
u_int get_dims ()
 
void validate_param_set (inst::set x)
 
- Public Member Functions inherited from optk::benchmark
 benchmark (const std::string &name)
 
std::string get_name ()
 

Additional Inherited Members

- Protected Member Functions inherited from syn::synthetic
void set_opt_param (inst::set op)
 
- Protected Attributes inherited from syn::synthetic
u_int m_dims
 
double m_lb
 
double m_ub
 
double m_opt
 
std::vector< propertiesm_properties
 
inst::set opt_params
 
sspace::sspace_t m_sspace
 
- Protected Attributes inherited from optk::benchmark
std::string m_name
 

Detailed Description

The (type III) Complex Deceptive Problem is given by

\[ f(\mathbf{x}) = -\left[ \frac{1}{n}\sum^n_{i=1}g_i(x_i)\right]^\beta, \]

where \(\beta\) is a non-linearity factor. Here we take \(\beta = 2\). Further

\[ g_i(x_i) = \begin{cases} x_i &\text{if } x_i < 0\\ -\frac{x_i}{\alpha_i} + \frac{4}{5} &\text{if } 0\le x_i \le \frac{4}{5}\alpha_i \\ \frac{5x_i}{\alpha_i} - 4 &\text{if } \frac{4}{5}\alpha_i \le x_i < \alpha_i \\ \frac{5(x_i - \alpha_i)}{\alpha_i - 1}+1 &\text{if } \alpha_i \le x+o < \frac{1 + 4\alpha_i}{5} \\ \frac{x_i - 1}{1-\alpha_i} + \frac{4}{5} &\text{otherwise.} \end{cases} \]

For each dimension, we select \(\alpha_i \in (0, 1)\). The parameters are constrained such that \(0\le x_i \le 1\). The global minimum arises at \(\mathbf{x}_i^* = \alpha_i\), with value f({x}^*) = -1. \(. */ class deceptive: public synthetic { public: deceptive (int dims); double evaluate (inst::set x) override; }; /** The deflected corrugated spring benchmark has the following formula: \f[ f(\mathbf{x}) = 0.1 \sum^n_{i=1}(x_i - \alpha)^2 - \cos \left( k \sqrt{\sum^n_{i=1}(x_i - \alpha)^2}\right), \f] where \) = k = 5 x_i 2$. The global minimum is located at \(x^*_i = \alpha\) with a value of \(f(\mathbf{x}^*) = -1\).

Member Function Documentation

◆ evaluate()

double syn::deflected_corrugated_spring::evaluate ( inst::set  x)
overridevirtual

Evaluate the benchmark (i.e. calculate the value of the objective fuinction) on the provided values.

Parameters
xA vector of double-precision values to evaluate the benchmark at.
Todo:
Verify that a vector of doubles does not constrict the range of benchmark functions which may be evaluated (i.e. as opposed to categorical variables such as strings).

Implements optk::benchmark.


The documentation for this class was generated from the following files: